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Abstract

To the same utterance, people’s responses in everyday dia-
logue may be diverse largely in terms of content semantics,
speaking styles, communication intentions and so on. Previ-
ous generative conversational models ignore these 1-to-n re-
lationships between a post to its diverse responses, and tend
to return high-frequency but meaningless responses.
In this study we propose a mechanism-aware neural machine
for dialogue response generation. It assumes that there ex-
ists some latent responding mechanisms, each of which can
generate different responses for a single input post. With this
assumption we model different responding mechanisms as
latent embeddings, and develop a encoder-diverter-decoder
framework to train its modules in an end-to-end fashion.
With the learned latent mechanisms, for the first time these
decomposed modules can be used to encode the input into
mechanism-aware context, and decode the responses with the
controlled generation styles and topics. Finally, the experi-
ments with human judgements, intuitive examples, detailed
discussions demonstrate the quality and diversity of the gen-
erated responses with 9.80% increase of acceptable ratio over
the best of six baseline methods.

Introduction

Conversational models, aiming at generating relevant and
fluent responses in free-form natural language, have at-
tracted increasing studies for the dialogue-based interface
with its wide application fields from customer service to user
entertainment (Abu Shawar and Atwell 2007; Grosz 2016).
Previous rule-based (Williams and Young 2007; Misu et al.
2012; Young et al. 2013) and retrieval-based (Ji, Lu, and Li
2014) conversational models requires manual efforts in rule
developing and feature engineering, or can only response the
posts in pre-existing cases, thus are difficult to be extended
to open domains. Recently, the vast amount of dialogue text
generated by social media provides the data basis for gen-
erative models of dialogue systems, which are promising to
outperform the conventional ones (Shang, Lu, and Li 2015).

Generative conversational models, which learn the map-
ping from an input post x to its response y, are typically
motivated by the previous studies in statistic machine trans-
lation (SMT). Instead of translating from one language to
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another, they “translate” an input post x to a response y via
maximizing the probability of p(y|x). However, since the
generic responses such as “I see”, “that’s OK” and “that’s
great” appear quite frequently in the corpus, the training
objective of maximum likelihood tends to produce high-
frequency responses, which might be meaningless and lack
of diversity (Li et al. 2016).

In this study, we find that the training corpus for conver-
sational models is intrinsically different from the one for
translation models in terms of output diversity. In transla-
tion corpus, since every sentence in a language and its trans-
lation in another language are semantically equivalent, there
exists a 1-to-1 relationship between them. However, in con-
versation corpus, an input post might correspond to multi-
ple responses with different semantics and speaking styles.
For example, in free-chat corpus used in this study the input
sentence “how could you be so silly” includes 62 different
responses. It means that a 1-to-n relationship between a post
to its responses actually exists in open-domain conversation.

Furthermore, we argue that this issue of response diver-
sity mainly comes from the different language mechanisms
people use in responding the same utterance. For exam-
ple, considering the input “have you eaten yet?” (a widely-
used sentence in Chinese for greeting), the respondent who
prefers rhetorical questions could response with “how about
you?”. In contrary, the respondent who prefers declarative
sentences could response affirmatively with “yes, I have”.
Hence, even for the same input the responses generated by
different mechanisms may be largely dissimilar in terms of
language style and response content.

To address this issue of response diversity, we explicitly
consider the multiplicity of responding mechanisms in mod-
eling dialogues and propose a probabilistic framework of
Mechanism-Aware Responding Machine (MARM). Specif-
ically, we model the responding mechanisms as latent em-
beddings, and represent the mapping from an post x to its re-
sponse y as a mixture of these responding mechanisms. Dif-
ferent from the conventional neural encoder-decoder (Cho et
al. 2014; Sutskever, Vinyals, and Le 2014) for response gen-
eration (Shang, Lu, and Li 2015; Yin et al. 2016), a frame-
work of encoder-diverter-decoder is developed, where the
module of diverter is used to generate mechanism-aware
context. After the model parameters are learned, the most
likely mechanisms to an input post x are selected to encode
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(a) Rank-frequency distribution. (b) Topic number in the responses of
conversation corpus.

(c) Topic entropy in the responses of
conversation corpus.

Figure 1: Quantitative study of response diversity. The figures of topic number and entropy of translation corpus are not shown,
since the translation sentences to a specific input always belong to the same topic.

the input into mechanism-aware context, and decode the re-
sponses with the controlled generation styles and topics.

To our best knowledge, this is the first time to generate
mechanism-dependent responses, which helps to distinguish
ungrammatical output from the meaningful but infrequent
ones. To an input post x, assume y′ be an ungrammatical
output while y∗ be a meaningful but infrequent one. The
principle of likelihood maximization assigns low probabili-
ties to both p(y′|x) and p(y∗|x), thus it cannot distinguish
them. Nevertheless, with the learned responding mecha-
nisms we experimentally discover that upon some mecha-
nism m p(y∗|x,m) might reach a big value, indicating that
y∗ is more likely to be generated by x using the mechanism
m. However, p(y′|x,m) still remains in a low value for all
the mechanisms. Furthermore, we also observe that the gen-
erated responses upon different mechanisms vary in styles
and topics. Therefore, we believe that responses generated
by MARM are more likely to be meaningful and diverse.

In summary, our main contributions are three folds: 1) for
the first time we quantitatively measured the response diver-
sity in the conversation corpus; 2) we propose an encoder-
diverter-decoder framework, in which the response mecha-
nisms on the responses can be explicitly modeled to produce
the mechanism-aware context for mechanism-dependent re-
sponse generation; 3) we empirically show that the proposed
method can yield performance visibly better than the other
six neural-based generative models in terms of both response
relevance and diversity by the human judgement. Specifi-
cally, it generates 9.80% increase of acceptable ratio over
the best baseline method (see Table 1).

Finally, we would like to emphasize that the proposed
mechanism-aware responding machine is task-agnostic and
can be applied to any generative conversational model. In
this study we apply it to the conversation model (Cho et al.
2014), where only one-round dialogue is considered. It can
be easily extended to other one-round dialogue models, and
also the model (Serban et al. 2015), where the context from
previous multiple rounds of dialogues are considered.

Quantitative Study of Response Diversity

Here, we quantitatively study the issue of response
diversity in the training corpus for conversation
compared with the one for machine translation.

Specifically, we are given two corpora, namely
Dc = {(x,y)|y is the response of input x} and Dt =
{(x,y)|y is translation of input x in different language}.
We collected Dc similar as suggested in (Wang et al. 2013)
from the open social platform Tencent Weibo (detailed
in the experiment section). We used a public corpus for
machine translation (CWMT 2013) as Dt. Originally, the
size of Dt is bigger than that of Dc. For fair comparison, we
randomly sampled the original Dt so that the size of these
two data sets is equal, namely |Dc| = |Dt| = 780, 852.

For each corpus we first check how frequent each input
sentence x occurs in it. Fig. 1(a) shows the rank-frequency
distribution of the input sentences in the two corpora, with
the x and y axes being lg(rank order) and lg(frequency) re-
spectively. It shows that this sentence-level frequency ex-
hibits the similar Zipf pattern, which widely occurs for the
word frequency in the natural language corpus. For example,
the sentences “how could you be so silly?” and “how old are
you?” appear 62 and 13 times in the conversation corpus.
Also, it shows that the curve for the conversation corpus is
far above the one for the translation corpus excepts the start-
ing points. There is a fact that 24.23% of the input sentences
in the conversation corpus occur at least twice, however, this
number decreases to 4.81% for the translation corpus.

With these frequent-occurred input posts in the conver-
sation corpus, we further explore the diversity of their re-
sponses in terms of content semantics. Here, we firstly train
Biterm topic model (Yan et al. 2013) on about 20 million
sentences, apply it (with 500 topics) to inferring the top-
ics on the whole corpus, and assign to each response only
one topic with the maximal value of topic distribution. Then,
for each input post, we count the number of different topics
of its corresponding responses and calculate the entropy of
their topic distribution. We observe that the diversity of cor-
responding responses increases with the number of covered
topics and the entropy value of the topic distribution.

Fig. 1(b) and 1(c) show the response diversity in the con-
versation corpus. In these two figures, the x axis represents
the frequency of an input sentence, and the y axis represents
the number of covered topics (in Fig. 1(b)) and the entropy
of the topic distribution (in Fig. 1(c)) for its responses, re-
spectively. These two figures show that the average values
of the corresponding y axis (the dotted line) increase along
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the frequency of the input post. It means that when an input
post occurs more frequent in the conversation corpus, it is
more likely that it leads to more diverse responses.

We also conduct the similar analysis on the translation
corpus and obtain totally different results (the correspond-
ing figures are omitted due to the space limitation). Though
some sentences occur multiple times in the source language,
the multiple translation sentences to a specific input always
belong to the same topic. Furthermore, we calculate the edit
distances among the translation sentences to a single input
and find that they are different slightly. This result is not sur-
prising since the two parallel sentences in the source and tar-
get language should have the same content semantics. Nev-
ertheless, as to the natural language conversation (especially
for free chat), the responses become quite divergent espe-
cially for the widely-occurred input. Therefore, we need to
explicitly model the multiplicity of response mechanism in
open environment conversation.

Mechanism-Aware Response Machine

Modeling of Response Mechanisms

Given an input sequence x = (x1, x2, · · · , xT ) and a re-
sponse sequence y = (y1, y2, · · · , yT ′), the generative con-
versation model aims to learn p(y|x) based on the training
corpus D = {(x,y)|y is the response of input x}. The con-
ventional neural encoder-decoder model first summarizes
the post as a vector representation, then feeds this repre-
sentation to a decoder to generate responses. Similar frame-
work has been applied in machine translation with remark-
able success (Cho et al. 2014; Sutskever, Vinyals, and Le
2014). However, the task of machine translation, which es-
timates the probability of a target language sentence condi-
tioned on the source language sentence with the same mean-
ing, is much easier than the task of conversation modeling
with large degree of response diversity (as shown in the pre-
vious section). Thus, the modeling of p(y|x) for natural lan-
guage conversation should be complex enough to represent
all the suitable and diverse responses.

To this end, in this study we assume that there are M
latent mechanisms {mi}Mi=1 for response generation. Then,
p(y|x) can be expanded as follows,

p(y|x) =
M∑
i=1

p(y,mi|x) =
M∑
i=1

p(mi|x)p(y|mi,x) (1)

In Equ. (1), p(mi|x) represents the probability of the
mechanism mi conditioned on x. This probability actually
measures the degree that mi can generate the response for x.
The bigger of this value is, the more degree that the mech-
anism mi can be used to generate the responses for x. Ad-
ditionally, p(y|mi,x) measures the probability that the re-
sponse y is generated by the mechanism mi for x.

Now, the question is how to model p(mi|x) and
p(y|mi,x) in the framework of encoder-diverter-decoder.
As shown in Fig. 2, a module of diverter is developed to
bridge encoder and decoder. The diverter takes the hidden
states of the encoder as input, which forms the summary

Input: x1, x2, …, xT

Decoder

Encoder

Response: y1, y2, …, yT’

Diverter

Mechanism-Aware Context

softm
ax

p(m
i |x), i=1, 2, 

, MMechanism Embeddings

concatenation

Original Context c

mi

c

[c, mi]

Figure 2: Structure of encoder-diverter-decoder model.

context c for the input post x. Then, p(mi|x) can be mod-
eled as follows (shown in the right part of Fig. 2),

p(mi|x) = exp g(mi, c)∑M
k=1 exp g(mk, c)

(2)

where g can be nonlinear, potentially multi-layered function
and mi represents the embedding of the i-th mechanism.
Here, {mi}Mi=1 are trained as model parameters. Addition-
ally, to avoid overfitting g is defined with the maxout activa-
tion function (Goodfellow et al. 2013):

g(mi, c) = mT
i Wtt

t = [max{t̃2j−1, t̃2j}]Tj=1,2,··· ,lc
t̃ = Wcc

(3)

where t̃j is the j-th element of the vector t̃, Wt ∈ R
lm×lc ,

and Wc ∈ R
2lc×lc . Here, lc and lm denote the dimensions

of c and mi respectively.
Next, to model p(y|mi,x) we must consider how an input

x and a mechanism mi jointly determine the response y.
Since the hidden context c give a representation of the input
x, c can be combined with mi to form a mechanism-aware
context. For model simplicity, the concatenation of [c;mi]
is utilized to form this mechanism-aware context. With this
adapted context as input, the decoder is expected to generate
mechanism-aware response for p(y|mi,x).

It is worth mentioning that the proposed diverter model is
independent of the concrete methods on how the decoder
use the context for response generation. The mechanism-
aware context can be fed to only the first hidden state
unit (Sutskever, Vinyals, and Le 2014) or every hidden state
unit in the decoder (Cho et al. 2014). The recent attention-
based decoder (Bahdanau, Cho, and Bengio 2015) can also
be applied to this mechanism-aware context to generate dif-
ferent context for every hidden state unit in the decoder. In
this paper, the method in (Cho et al. 2014) is adopted. The
details on the decoder is omitted due to the space limitation.

With the modeling of p(mi|x) and p(y|mi,x) the objec-
tive of likelihood maximization, namely

∑
(x,y)∈Dc

log p(y|x)=
∑

(x,y)∈Dc

log
M∑
i=1

p(mi|x)p(y|mi,x)

(4)
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is used to learn the mechanism embeddings {mi}Mi=1 and
other model parameters. Observed from Equ.(4), the compu-
tational complexity is linear to the number of mechanisms.
Thus, it is not difficult to capture complex phenomena in
natural language if large number of mechanisms needed.

Note that calculating the logarithm of the total probability
(required here) may cause overflow or underflow problems,
which can be avoided by the technique of numerical compu-
tation in (LogSumExp 2016).

Mechanism-Aware Response Generation

With all the responding mechanisms {mi}Mi=1 obtained, we
develop the following mechanism-aware method to generate
responses for a new input x. First, with the probabilities of
p(mi|x) we select the L (L < M ) mechanisms with the
maximal values of p(mi|x). These L mechanisms are most
likely to generate the appropriate responses for x. Then, for
each selected mechanism ml, we utilize beam search to gen-
erate K responses candidates by maximizing p(y|ml,x).
Finally, all the L×K generated response candidates are re-
ranked using following score:

p(y,ml|x) = p(ml|x)p(y|ml,x) (5)

where the candidate y is generated by mechanism ml. Only
the top K candidates are returned as the final responses.

The ranking measure in Equ. (5) contains two folds. First,
maximizing p(ml|x) guarantees that the responses gener-
ated by ml are relevant to the input x. Second, maximizing
p(y|ml,x) guarantees that the response y generated by ml

is fluent and grammatical for x. Thus, this mechanism-aware
method is expected to generate the appropriate responses,
which are both relevant and fluent to the input.

Additionally, instead of using p(y|x), we use p(y,ml|x)
to rank the response candidate y generated by ml. With this
new measure, a response y which has a relatively low value
of p(y|x) may be promoted to higher rank if y has higher
probability p(y,ml|x). It means that the grammatical but
infrequent responses, whose values of p(y|x) are relatively
low, may be ranked higher by some mechanism, and then
more likely to be chosen in the final responses.

Furthermore, since the mechanism-aware contexts are dif-
ferent for different mechanisms, the responses vary among
mechanisms. The experiments also show that different
mechanisms has different influences on the wording and
speaking styles in responding. Since the MARM generates
responses from L different mechanisms, these responses
tend to be more diverse. Hence, we argue that the method of
mechanism-aware response generation will produce mean-
ingful and diverse responses, which will be further demon-
strated in the experimental section.

Experiment Process

Dataset Details

To obtain the conversation corpus, we collected nearly 14
million post-response pairs from Tencent Weibo1. Then, we
remove spams and advertisements from dataset, and only

1http://t.qq.com/?lang=en US

retain high-quality post-response tuples. Totally, we have
815, 852 pairs left, among which 775, 852 ones are for train-
ing, and 40, 000 for model validation.

Benchmark Methods

We implemented six conversation models for comparison:
1) RNNs2s (Sutskever, Vinyals, and Le 2014): The one-

layer seq2seq model, which uses the last hidden state of the
encoder as the initial hidden state of the decoder. 2) RN-
Nencdec (Cho et al. 2014): The one-layer encoder-decoder
model, which feeds the last hidden state of encoder to every
cell and softmax unit of the decoder. 3) RNNatt (Bahdanau,
Cho, and Bengio 2015): The model based on the encoder-
decoder framework with attention signal. 4) NRM (Shang,
Lu, and Li 2015): The neural responding machine with
both the global and local scheme for attention modeling.
5) MMMI-bidi and MMI-antiLM (Li et al. 2016): The one-
layer encoder-decoder model using Maximum Mutual Infor-
mation (MMI) as the objective function to reorder generated
responses. It obtains two variants λ = 0.5 and γ = 1.

Note that the benchmarks are the state-of-the-art for di-
alogue generation based on one-round input. They differ
in how the context of the input post from the encoder is
fed to the decoder for response generation. The proposed
mechanism-aware model with the diverter module can be
applied to any of these models, to improve the respond-
ing performance in another vertical direction. In this study
the mechanism-aware model based on RNNencdec is imple-
mented for evaluation. Again, we stress that the mechanism-
aware model can be easily applied to the models (Serban
et al. 2015), where the context is summarized from previ-
ous multiple rounds of dialogues. In the future MARM for
multi-round dialogue systems will be evaluated.

Implementation Details

Note that segmentation granularity and vocabulary size have
an impact on model performances, for fair comparison, we
used the vocabulary of 8,000 words (a mixture of Chinese
words and characters) for all models. This vocabulary covers
99.93% of the words in the corpus. All the other characters
are replaced with a special token “UNK”.

As suggested in (Shang, Lu, and Li 2015), the word em-
beddings for the encoders and decoders are treated respec-
tively. Some initial experiments demonstrated that the two
separate sets of word embeddings can improve the perfor-
mance. For fair comparison, the dimension of the word em-
bedding is set to 128 for all the models. As suggested in (Cho
et al. 2014), the GRU unit is simpler and faster to con-
verge than LSTM. Thus, we applied the one-layer GRU units
(each with 1024 cells) to all the models in experiment. For
MARM, the number of mechanisms is M = 4. As the mech-
anism increases, the language styles of some mechanisms
become similar. While more mechanisms yield better per-
formance in terms of objective function, 4 mechanisms are
suitable to generate responses with distinctive wording clus-
ters and satisfactory quality in experiments. The mechanism
embeddings with 128 dimensions are initialized by a uni-
form distribution between -0.2 and 0.2. For response gen-
eration, we select top L = 2 mechanisms for beam search,
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Table 1: The results from human judgement.

Models
%Acceptable∗ %Bad %Normal %Good DiversityTop-1 Top-2 Top-3 Top-4 Top-5

RNNencdec 59.67 57.17 55.78 54.50 53.13 46.83 36.76 16.41 1.183
NRM 57.33 55.17 54.00 52.83 51.40 48.57 37.49 13.94 1.457
RNNatt 52.00 50.50 47.89 46.25 45.13 54.87 36.93 8.20 1.513
RNNs2s 55.00 50.00 47.33 46.00 44.33 55.64 39.09 5.27 1.553
MMI-antiLM 49.00 45.67 44.00 43.25 43.40 56.60 36.47 6.93 1.053
MMI-bidi 58.67 58.33 55.89 54.67 54.60 45.40 45.33 9.27 1.523
MARM 64.67 66.67 65.22 64.33 64.40 35.60 41.13 23.27 2.687

∗The“Top-k” denotes the responses with top-k probabilities in each group.

the number of response candidates from each mechanism is
K = 5. The beam size is 200 for all models.

All the other parameters are initialized by a uniform dis-
tribution between -0.01 and 0.01. In training, we divided the
corpus into mini-batches whose size is 128, and used the
RMSProp (Graves 2013) algorithm for optimization. The
training stops if the perplexity of the validation set does not
decrease in 7 consecutive epochs. For each model, we se-
lected the parameters updated after epoch with the least per-
plexity for the further evaluation. All the models were imple-
mented using Theano (Theano Development Team 2016).

Human Judgement

Due to response diversity, it is practically impossible to es-
tablish a data set which adequately cover all the responses
for given posts. Thus, the evaluation measures, such as the
BLEU score (Papineni et al. 2002), are not appropriate. Ad-
ditionally, although the perplexity and BLEU are widely
used in translation evaluation the lower values of these mea-
sures do not lead to better responses evaluated by human
judgement (Liu et al. 2016). Hence, we only use the careful
human judgement in our experiment.

Several labelers from a professional company were in-
vited to evaluate the quality of the responses for 300 random
sampled posts. For each test post, every model generated 5
responses as a group. For each response the labelers were
asked to score its quality with one of the following 3 levels:

1) Bad: the response is NOT grammatical or relevant. 2)
Normal: the response is grammatical and relevant to the in-
put post. 3) Good: beyond the level of Normal, the response
is interesting and meaningful.

If a response is scored Normal or Good, we call this re-
sponse is acceptable. If the scores for a single response are
different, it will be considered again in a group discussion
for a consensus. Additionally, to evaluate the diversity of the
responses, for the 5 responses generated by a given model
for a post, the labelers were asked to annotate the number of
different meanings among the accepted responses.

Hence, with the labeling results we calculated the per-
centage of bad, normal, good, and acceptable responses,
and also the average values of the different meanings in the
responses. Note that previous studies (Ritter, Cherry, and
Dolan 2011; Shang, Lu, and Li 2015) only used the top-1
response for human judgement, and did not consider the di-
versity of the generated responses.

Experimental Results and Analysis

Experimental Results

The experimental results are summarized in Table 1. It
shows that the Acceptable ratio and Diversity of MARM
visibly outperform other models. Consider the Top-5 Ac-
ceptable ratio. The best baseline method MMI-bidi obtain
54.60% Acceptable ratio, while MARM reaches 64.40%
with the increase percentage of 17.95%. We observe that
this improvement is mainly from more Good responses gen-
erated (16.41% vs. 23.27%), indicating that MARM outputs
more meaningful responses in the experiments.

Also, it is interesting to see that for the 4 algorithms of
RNNencdec, NRM, RNNatt, and RNNs2s their Acceptable
ratios at Top k level has a sharp decrease tendency with
the increase of k. For example, the Acceptable ratio of RN-
Nencdec decreases from 59.67% at Top-1 level to 53.13% at
Top-5 level. It indicates that the responses ranked at lower
positions generated by these models obtain more unsatis-
factory quality. However, the Acceptable ratio of MARM
decreases from 64.67% at Top-1 level to 64.40% at Top-5
level, only 0.27% decrease, indicating that MARM gener-
ates high-quality responses even when they are ranked at the
lower positions. We believe that this stable performance is
due to the fact that the 5 selected responses may be gen-
erated from different responding mechanisms, and each of
them is one of the most probable responses generated by a
selected mechanism.

Meanwhile, we observe that the diversity measure of
MARM reaches 2.687, much bigger that 1.523 from the
best baseline of MMI-bidi. Thus, compared with the other
models, MARM not only promotes to generate relevant and
grammatical responses, but also generates diverse ones with
the support of multiple mechanisms in the experiments.

Furthermore, we find the following two interesting obser-
vations. 1) For the four methods (RNNencdec, NRM, RN-
Natt and RNNs2s) which directly model p(y|x), we ob-
serve that their Acceptable ratio decreases as the Diver-
sity measure increases. In other words, fitting the data bet-
ter leads to more similar responses for a given post. 2)
The models of RNNatt and NRM using the attention tech-
nique obtain unsatisfactory performance. The attention tech-
nique was developed to consider the word alignment be-
tween the long sentences in the source and target languages
for machine translation. However, this alignment may not
occur frequently especially in the experimental training cor-
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pus with response diversity. Thus, the models with attention
technique may overfit the training data but achieve poor per-
formance on the test data in the experiments.

Analysis on Responding Mechanisms

In order to intuitively understand what the learned respond-
ing mechanisms are and how they influence the process
of response generation, we identified the keywords in the
responses generated by different responding mechanisms.
With each mechanism mi we used it to generate 5 responses
for each of the 300 posts in the test set. We put all the
1,500 responses from a mechanism mi together to form a
pseudo document Di. Then, we calculated the following
measure with the j-th word and the i-th mechanism, namely

p(wordj |mi) =
nj
i∑M

k=1 nj
k

, where nj
i is the number of times

that the j-th word occurs in Di. Clearly, the bigger of this
value, the more likely that the mechanism mi utilizes it for
response generation. Finally, for each mechanism we listed
the top-10 keywords ranked by this measure, as shown in
Table 2. Note that in this table we only considered the key-
words which occur enough times in Di, namely nj

i > 100.

Table 2: Keywords from different responding mechanisms

Table 2 shows the keywords for each responding mech-
anisms. For m1, conjunction words, such as that, still and
at once, occupy a large proportion. For m2, modifier words,
such as nice, little and tiny, occupy a large proportion. For
m3, the words about questions, such as where, why, how and
the question mark, occur frequently. Thus, this mechanism is
more likely to generate interrogative or rhetorical sentences.
For m4, most of the keywords, such as cannot, always and
must, have the affirmative or negative tones. Thus, it may
generate the responses in the form of emphatic sentences.
These observations indicate that the obtained mechanisms
have certain influence on the wording and speaking styles in
responding. Hence, for the same input, we can utilize differ-
ent mechanisms to increase the diversity of responses.

Additionally, some examples in Table 3 empirically
shows how the different mechanisms generate relevent, flu-
ent and diverse responses. These examples are consistent
with the analysis in Table 2.

Related Work

The related works of conversation models are five-folds.
Statistic Machine Translation. The basic neural-based

encoder-decoder framework for generative conversation

Table 3: The responses from MARM for input examples

models is actually from the studies of statistic machine trans-
lation. Sutskever et al. (2014) used a multilayered LSTM
as the encoder and another deep LSTM as the decoder for
machine translation. Later, Cho et al. (2014) proposed the
RNN encoder-decoder framework, where the generated con-
text from the input is fed to every unit in the decoder. Bah-
dana et al. (2015) extended the encoder-decoder framework
with the attention technique to improve the performance of
SMT for long input sentences. However, all these SMT stud-
ies do not consider the issue of response diversity.

Conversation Models. Along the way of neural SMT,
many recent studies showed that these models can also
be successfully used in conversation modeling, another
sequence-to-sequence learning problem. Specifically, Shang
et al. (2015) further extended the attention technique with
both global and local schemes for generating short conversa-
tion. Their study qualitatively analyzed the issue of response
diversity, but lacked the quantitative study on it. Most re-
cently, researchers begun to investigate models for multiple-
round conversation. Serban et al. (2015) built an end-to-end
dialogue system using generative hierarchical neural net-
work. A related model proposed by Sordoni et al. (2015)
applied a hierarchical recurrent encoder-decoder model for
query suggestion. The basic idea for multiple-round conver-
sation is to extend the context generation from the immedi-
ate previous sentence to several previous ones.

Response Diversity. Some recent studies began to tackle
the issue of response diversity from both SMT and conver-
sation sides. Gimpel et al. (2013) proposed the methods,
namely system combination and discriminating re-ranking,
to produce a diverse set of plausible translations. For conver-
sation modeling, Li et al. (2016) argued that the traditional
objective function is unsuited, and used Maximum Mutual
Information (MMI) as the objective. They also mentioned
that the MMI measure penalizes not only high-frequency re-
sponses but also fluent ones, and may lead to ungrammatical
outputs. Thus, they reduced the MMI measure to a simple
version. Our work addresses the response diversity issue by
directly modeling the different responding mechanisms. The
proposed mechanism-aware ranking method helps to pro-
mote the infrequent but meaningful responses.

Discourse Relation. Some recent studies focus on auto-
matically recognizing the internal structure and logical re-
lationship between adjacent sentences. Ji et al. (2016) pro-
posed a RNN-based model for jointly modeling sequences
of words and discourse relations. However, this work explic-
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itly models the discourse relations between two sentences in
a supervised manner with the manual annotations, while our
work learns the latent mechanisms in an unsupervised way.

Concept-to-text Generation. The Concept-to-text gener-
ation models handle non-linguistic input and generate tex-
tual output. Konstas et al. (2012) proposed a joint model
for content selection and surface realization with a proba-
bilistic context-free grammar. Wen et al. (2015) proposed
a RNN model for spoken dialogue systems which generate
responses for given structured data as input. These models
handle non-linguistic input, while generative conversational
models handle linguistic input like sentences.

Conclusion and Future Work

In this study, to address the issue of response diversity we
propose a framework of encoder-diverter-decoder for con-
versation modeling, aiming to explicitly model the latent re-
sponding mechanisms in free chat. The learned mechanisms
helps to generate mechanism-aware responses, which are
empirically shown to be diverse, relevant, and fluent. Incor-
porating auxilairy information, including topic distribution,
demographic information of the respondents and so on, into
the conversation model will be promising to provide person-
alized responses in accordance with a specific demographic
group. We will explore towards this direction in future work.

Acknowledgements

This work was supported by the National Natural Sci-
ence Foundation of China (No. 91546122, 61573335,
61473273, 61473274), National High-tech R&D Program
of China (863 Program) (No.2014AA015105), Guangdong
provincial science and technology plan projects (No. 2015
B010109005). This work was also supported by the funding
of WeChat cooperation project. We thank Hao Ye, Ming Bai
and WeChat Chatbot Team for their constructive advices. We
also thank the anonymous AAAI reviewers for their helpful
feedback.

References
Abu Shawar, B., and Atwell, E. 2007. Chatbots: Are They
Really Useful? LDV-Forum: Zeitschrift für Computerlinguistik
und Sprachtechnologie.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural Ma-
chine Translation by Jointly Learning to Align and Translate.
In ICLR.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
Phrase Representations using RNN Encoder-decoder for Statis-
tical Machine Translation. In EMNLP.
CWMT. 2013. http://www.liip.cn/CWMT2013/evaluation.
html.
Gimpel, K.; Batra, D.; Dyer, C.; and Shakhnarovich, G. 2013.
A Systematic Exploration of Diversity in Machine Translation.
In EMNLP.
Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville, A.;
and Bengio, Y. 2013. Maxout Networks. In ICML.
Graves, A. 2013. Generating Sequences With Recurrent Neural
Networks. arXiv.

Grosz, B. J. 2016. Ai100 report. https://ai100.stanford.edu/
2016-report.
Ji, Y.; Haffari, G.; and Eisenstein, J. 2016. A Latent Variable
Recurrent Neural Network for Discourse Relation Language
Models. In NAACL.
Ji, Z.; Lu, Z.; and Li, H. 2014. An Information Retrieval Ap-
proach to Short Text Conversation. arXiv.
Konstas, I., and Lapata, M. 2012. Unsupervised concept-to-text
generation with hypergraphs. In NAACL.
Li, J.; Galley, M.; Brockett, C.; Gao, J.; and Dolan, B. 2016. A
Diversity-Promoting Objective Function for Neural Conversa-
tion Models. In NACCL.
Liu, C.-W.; Lowe, R.; Serban, I. V.; Noseworthy, M.; Charlin,
L.; and Pineau, J. 2016. How NOT To Evaluate Your Dialogue
System: An Empirical Study of Unsupervised Evaluation Met-
rics for Dialogue Response Generation. In ACL.
LogSumExp. 2016. https://en.wikipedia.org/wiki/LogSumExp.
Misu, T.; Georgila, K.; Leuski, A.; and Traum, D. 2012. Re-
inforcement Learning of Question-answering Dialogue Policies
for Virtual Museum Guides. In SIGDIAL.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W. 2002. BLEU:
a Method for Automatic Evaluation of Machine Translation. In
ACL.
Ritter, A.; Cherry, C.; and Dolan, W. B. 2011. Data-driven
Response Generation in Social Media. In EMNLP.
Serban, I. V.; Sordoni, A.; Bengio, Y.; Courville, A.; and
Pineau, J. 2015. Building End-To-End Dialogue Systems Using
Generative Hierarchical Neural Network Models. In AAAI.
Shang, L.; Lu, Z.; and Li, H. 2015. Neural Responding Machine
for Short-Text Conversation. In ACL.
Sordoni, A.; Bengio, Y.; Vahabi, H.; Lioma, C.; Simonsen,
J. G.; and Nie, J.-Y. 2015. A Hierarchical Recurrent Encoder-
Decoder For Generative Context-Aware Query Suggestion. In
CIKM.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
Sequence Learning with Neural networks. In NIPS.
Theano Development Team. 2016. Theano: A Python frame-
work for fast computation of mathematical expressions. arXiv.
Wang, H.; Lu, Z.; Li, H.; and Chen, E. 2013. A Dataset for
Research on Short-Text Conversation. In EMNLP.
Wen, T. H.; Gasic, M.; Kim, D.; Mrksic, N.; Su, P. H.; Vandyke,
D.; and Young, S. 2015. Stochastic Language Generation in
Dialogue using Recurrent Neural Networks with Convolutional
Sentence Reranking. In SIGDIAL.
Williams, J. D., and Young, S. 2007. Partially Observable
Markov Decision Processes for Spoken Dialog Systems. Com-
puter Speech & Language.
Yan, X.; Guo, J.; Lan, Y.; and Cheng, X. 2013. A Biterm Topic
Model for Short Texts. In WWW.
Yin, J.; Jiang, X.; Lu, Z.; Shang, L.; Li, H.; and Li, X. 2016.
Neural Generative Question Answering. In IJCAI.
Young, S.; Gasic, M.; Thomson, B.; and Williams, J. D. 2013.
POMDP-based Statistical Spoken Dialog Systems: a Review.
Proceedings of the IEEE.

3406




